loading

Support Vector Machines / Christmann, Andreas

Tác giả : Christmann, Andreas

Nhà xuất bản : Springer

Năm xuất bản : 2008

Mô tả vật lý : 611 p.

Số phân loại : 006.31

Chủ đề : 1. Computer Science. 2. Book.

Thông tin chi tiết

Tóm tắt :

This book explains the principles that make support vector machines (SVMs) a successful modelling and prediction tool for a variety of applications. The authors present the basic ideas of SVMs together with the latest developments and current research questions in a unified style. They identify three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and their computational efficiency compared to several other methods. Since their appearance in the early nineties, support vector machines and related kernel-based methods have been successfully applied in diverse fields of application such as bioinformatics, fraud detection, construction of insurance tariffs, direct marketing, and data and text mining. As a consequence, SVMs now play an important role in statistical machine learning and are used not only by statisticians, mathematicians, and computer scientists, but also by engineers and data analysts.

 Thông tin dữ liệu nguồn

 Thư viện  Ký hiệu xếp giá  Dữ liệu nguồn
Đại học quốc gia Hà Nội
https://repository.vnu.edu.vn/handle/VNU_123/25624