B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness / Dinh Dũng
Tác giả : Dinh Dũng
Nhà xuất bản : Journal of Complexity
Năm xuất bản : 2011
Chủ đề : 1. Besov space of mixed smoothness. 2. Mixed B-spline. 3. Quasi-interplant. 4. Quasi-interpolant representation. 5. Dataset.
Thông tin chi tiết
Tóm tắt : | Let be a set of n sample points in the d-cube Id≔[0,1]d, and a family of n functions on Id. We define the linear sampling algorithm Ln(Φ,ξ,⋅) for an approximate recovery of a continuous function f on Id from the sampled values f(x1),…,f(xn), by For the Besov class of mixed smoothness α, to study optimality of Ln(Φ,ξ,⋅) inLq(Id) we use the quantity where the infimum is taken over all sets of n sample points and all families in Lq(Id). We explicitly constructed linear sampling algorithms Ln(Φ,ξ,⋅)on the set of sample points ξ=Gd(m)≔{(2−k1s1,…,2−kdsd)∈Id:k1+⋯+kd≤m}, with Φ a family of linear combinations of mixed B-splines which are mixed tensor products of either integer or half integer translated dilations of the centered B-spline of order r. For various 0 |
Thông tin dữ liệu nguồn
Thư viện | Ký hiệu xếp giá | Dữ liệu nguồn |
---|---|---|
Viện Công nghệ Thông tin - ĐHQGHN |
|
https://repository.vnu.edu.vn/handle/VNU_123/10978 |